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Comparison between the projection operator and 
continued fraction approaches to perturbation theory 

R I Jackson and S Swain 
Department of Applied Mathematics and Theoretical Physics, The Queen’s University of 
Belfast, Belfast BT7 l N N ,  Northern Ireland 

Received 8 April 1981 

Abstract. The connection between the projection operator approach and the continued 
fraction approach to  perturbation theory is investigated. A concise solution to the linear 
operator equation Alx) = Ib) is found in terms of the level shift operator using projection 
operator techniques. The analogous process to  the use of projection operators in the 
continued fraction method of solving the same problem is identified, and a parallel 
development performed. The connection between the two approaches is thereby 
established, and continued fraction expressions for the level shift operator obtained. The 
abstract equation is then specialised to deal with (i) the eigenvalue problem and (ii) the 
calculation of transition probabilities for quantum mechanical systems described by a 
time-independent Hamiltonian. Particular attention is paid to the problem of degeneracy 
and it is shown that the most convenient expressions are found by a hybrid of the two 
approaches. 

1. Introduction 

A standard way of developing perturbation theory utilises projection operators and the 
formal elimination of unwanted quantities by manipulation of operator equations. 
These techniques are discussed in standard textbooks such as Messiah (1962) and 
Goldberger and Watson (1964) (see also Cohen-Tannoudji 1968). The fundamental 
properties of the system, such as the shifts in the energy levels and the induced transition 
due to a perturbation V, are determined by the level shift operator R, which is usually 
expanded in a power series in V. 

An alternative to the projection operator method is to use continued fraction 
expansions; perturbation theories in terms of such quantities were first obtained by 
Feenberg (1948a, b) (see also Richards 1948, Feshbach 1948) for stationary state 
problems. Recently, continued fraction expressions for transition probabilities have 
been obtained (Swain 1975), and the general method of obtaining continued fraction 
solutions to systems of linear equations has been considered as a problem in linear 
algebra, thereby emphasising its generality (Swain 1976, 1977). 

High-order perturbation theory may be straightforwardly developed using either of 
these formalisms. 

One of the advantages of the projection operator approach is the neatness with 
which it can tackle problems involving degeneracy. The projection operator can be 
defined to span only the degenerate states and one is left with a matrix equation whose 
dimension is equal to the degree of degeneracy, which is usually small. The continued 
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fraction method can also be applied to degenerate problems (Swain 1977) but the 
resulting expressions are complicated. 

The continued fraction approach has the advantage that self-energy effects are 
treated naturally in this formalism, so that the method is particularly useful for dealing 
with saturation and other nonlinear effects. In the projection operator approach the 
resolvent operator is usually developed in a power series expansion, which is not 
suitable for describing saturation. The level shift operator can be developed in a 
continued fraction representation using projection operator techniques quite generally 
(Mower 1980) but the derivation is complicated, making use of repeated partitioning of 
the projection operators, and the final result is complex. Lowdin (1962) has discussed 
the connection between projection operator and matrix partitioning techniques and has 
obtained some formal continued fraction expressions. 

The object of the present investigations is to develop the connection between the 
projection operator and continued fraction approaches, thereby making it possible to 
take advantage of the strengths of both. The fundamental step is to identify the process 
analogous to the use of the projection operator in the continued fraction approach. By 
these means we are able to obtain simple continued fraction expressions for the level 
shift operator, and the method of derivation is also considerably more concise than 
those used previously. 

To facilitate comparisons the projection operator approach is briefly described in 
0 2 and the level shift and projection operators introduced. The problem considered is 
the solution of a set of linear inhomogeneous equations which by appropriate spec- 
ialisation may be used to describe the calculation of perturbed energy levels or 
transition probabilities. The same problem is considered in 0 3 from the continued 
fraction viewpoint, the essential step being to determine the procedure which is 
analogous to the use of projection operators. In 8 4 the connection between the two 
approaches is established, and continued fraction series for the level shift operator set 
down. In 00 5 and 6 the formalism is applied to the eigenvalue problem and to the 
calculation of transition probabilities respectively, in both cases particular attention 
being paid to dealing with degenerate problems. 

2. The projection operator technique 

In this section we outline the projection operator method using a concise but general 
approach. Consider the equation 

Alx) = lb) (1) 

which we wish to solve for (x) .  We introduce the projection operators P and Q = 1 - P 
which satisfy 

PQ=QP=O 

P 2 = P  Q~ = Q. 

For the moment we do not specify these quantities further. The next step is to separate 
the operator A into a part A' which commutes with P (and therefore with Q )  and a 
remaining part Al.  That is, we set 

A = A ' + A '  ( 3 a )  
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where 

[A', P]  = [A', Q] = 0 

(in typical applications we take A' to be some unperturbed Hamiltonian and A' the 
perturbation). Since P +  Q = 1 we may write equation (1) in the form 

(A'+A')(P+ Q ) l x )  = Ib). (4) 

(A'+PA')P~x)+PA'Q~x)=P~~) (5a)  

(A'+ QA')Qlx)+ Q A ' P ~ x )  = Qlb)  ( 5 6 )  
where we have made use of the properties ( 2 a )  and ( 2 b ) .  If the operator (Ao+ QA')-' 
exists, we may solve (5b)  formally for Qlx): 

Operating on equation (4) first with P, then with Q, gives us the two equations 

Qlx) = (A'+ QA')-'(QIb)- QA'PIx)). (6) 

This expression may be used to eliminate Q l x )  from the left-hand side of equation ( 5 a )  
to give 

(7) {A' + PA I P  - PA ' (A' + QA ')- QA 'P}P( x )  = P{ 1 - PA (AO + QA I)- Q}I b ) 

an equation for PIX) only. In terms of the level shift operafor, R ,  

R = PA'P-  PA'(A' + QA')-'QA'P 

and the operator, S,  

s = P - P A ' ( A ~ +  QA')-'Q 

equation (7) becomes 

(A'+ R ) P ( X )  = sib). (10) 

Equation (10) is the main result of the projection operator approach. The particular 
form to which it reduces depends upon the choice of the projection operator P. Thus if 
we take 

P = /1)( 11 (11) 

( ~ ' + ~ ) ( i ) ( i l x ) =  sli)(ilb) (12) 

we obtain 

i 

where we have introduced a complete set of states X i  li)(il= 1 on the right-hand side. 
Operating with (11 from the left on equation (12) gives 

( ~ ? 1 + ~ l l ) x l = C  SIibz (13) 
I 

where we have used the notation ( l l x )  = x l ,  ( i l b )  = bi, (lISli) = Sli, etc. Thus, by using 
the projection operator (11), we obtain the component x1 of the vector I x )  in terms of 
the matrix elements R l l  and S l i .  

A more general choice of projection operator is 
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If the vectors la) are all eigenvectors of A' then the conditions ( 3 b )  are satisfied. 
Proceeding as before we obtain the equations 

2 ( ~ L 6 , p  + ~ , p ) x p  = C Saibi, a = 1 , 2  , . . . ,  n. (15) 
p = 1  I 

Thus the x p  are determined by the n equations (15). In the remainder of this paper we 
use Greek labels to indicate the n vectors singled out in equation (14). 

In order to calculate x1 or the x p  one needs explicit expressions for the matrix 
elements Rap and Sei.  The usual procedure is to develop these in a power series 
expansion. 

Iterating the operator relation 

(A + P)- l  = ~ - l - ~ - l  P O  + k 4 - l  (16) 

one obtains the expansion 

which, after substitution into equations (8) and (9), gives the power series expansions 

m Q k  R = P  ( - A 1 ~ )  A ' P  
k = O  A 

S = P  ( - A 1 7  
k = O  A '  

cc 

It is clear from either expressions (8) and (9) or (18) and (19) that R and S are related: 

R = SA'P. (20) 

In terms of matrix elements 

R,, = SaiA;,. 
1 

The present formalism is abstract but by choosing appropriate forms for A, (x) and 
Ib) we describe either time-dependent or time-independent perturbation theory, as we 
demonstrate in Q Q 5  and 6. 

3. The continued fraction technique 

We now investigate the type of problem posed in Q 2 using continued fraction tech- 
niques. 

Consider the set of linear equations 
N 

C a..x. 81 I = b. 1 )  i = 1 , 2  , . . . ,  N. 
j =  1 

We have shown that the solution of such a set in terms of continued fractions (Swain 
1976) is given by 
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where the notation of that paper is followed, and the 9 functions are defined by the 
relations 

9. Ik =9.9!), I 9 j k l =  9jg!)@k),  . . . etc ( 2 4 ~ )  

Thus the 9 are defined iteratively which results in their taking a continued fraction form 
(or more exactly, the form of a sum of series of products of continued fractions). Note 
that in expressions (23), (24b) and (24c) the sums over j ,  k . . . ; r, s .  . . etc are such that 
no diagonal matrix elements a ,  appear. 

Here we wish to find a way of handling the set (22) which is analogous to the 
projection operator methods used in Q 2. This can be done by splitting the xi  into two 
sets, x, :  cy = 1 ,2 ,  . . . , n and x i :  j = n + 1, n + 2, . . . , N .  We use only Greek subscripts to 
describe members of the first set which involve the same states as those employed in the 
definition of the projection operator of equation (14). The procedure is to solve the 
second set amongst themselves, regarding the members of the first set as inhomo- 
geneous terms wherever they appear in the equations. That is, we consider the set of 
equations 

2 a,xj = bi - 'f ai,x, = ci, i = n + 1, . . . , N. (25) 
j = n + l  a = l  

This set may be solved using equation (23), when we obtain 

The superscripts (1, 2, . . . , n )  on the 9 functions in equation (26) indicate that j ,  and 
the variables summed over, k,  I ,  . . . , cannot take any of the values 1 ,2 ,  . . . , n,  and that 
these states are also e x c l u d e d  in the calculation of the 9 functions. (This must clearly be 
so as i and j on the left-hand side of equation (25) do not take the values 1, 2, . . . n.) 

Using ci = bi - C, a i a x ,  in equation (26), the latter may be rewritten as 

We may now substitute the above expressions for the xi, j = n + 1, , . . , N, into the 
remaining set of equations for the x,  
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when, after a little simplification, one obtains 

Expression (29) is the main result of the continued fraction approach; it defines a set 
of equations connecting the x ,  variables only. Thus it represents the partial solution of 
the set of equations (22) obtained by eliminating the subset of variables xn+',  xniZ, . . . , 
xN.  (Although we have derived our results for finite N we assume that they hold also for 
N infinite.) Expression (29) is more general than expression (23) in that it includes the 
latter as a special case. Thus if we set n = 1, a = p in equation (29) we recover equation 
(23) if we bear in mind that the expression in parentheses in the former is then just equal 
to 9,. 

Equation (29) obtained using continued fraction methods corresponds to equation 
(15) obtained using projection operator techniques. The use of the projection operator 
(14) involving the n states a = 1, 2 , .  . . , n is clearly equivalent to eliminating all 
variables except x l ,  x 2 ,  . . . , x ,  from the linear equations (22). 

4. Comparison of projection operator and continued fraction methods 

Equations (29) and (15) must obviously be equivalent; by comparing the two we are led 
to the correspondences 

sap = a,,, a , p = l , 2  , . . . ,  n. (31b) 
Equation ( 3 0 a )  defines RaP only for a, P members of the set 1 , 2 , .  . . , n ;  however, 
we are free to extend the definition by allowing CY, p to range over the full set of 
values 1, 2 , .  . . , N. Then we may write equation (31a) as 

Sei = -Rai/9i1.-") i # 1 , 2  , . . . ,  n. (32) 

The second line of equation (30b) follows from making use of equation (24). The fact 
that the AZa term need not cancel the a,, term in equation (30b) is a consequence of the 
fact that A' may still have non-zero diagonal elements. If we write A = A o + A 1  where 
A' is diagonal we may write equations (30) as 

thereby obtaining a continued fraction expression for the level shift operator. 
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By these equivalences we may write equations (29) in the form of equation (15) 
with the R,, and Sei given explicitly by the continued fraction expressions (30)-(33). 

It will be observed that expressions (30)-(32) are consistent with equation (21). 
Expression (33) provides a continued fraction alternative to the power series 

expansion (18). In addition to providing a natural way of describing saturation effects, 
continued fractions usually have much better convergence properties than power series. 

Although this has not been made explicit, we should emphasise that the form of the 
level shift operator depends upon the projection operator being used. We may indicate 
this dependence by writing R,, as given, for example, by equation (33), as R&tQy"' where 
the superscripts 1, 2, . . . , n indicate the states employed in the definition of the 
projection operator. Making use of this notation and of equation (32) we may write 
equation (29) in the combined level shift operator/continued fraction form 

Finally, we note that there is a connection between the level shift operators defined 
for different projection operators. For example, we have the relation 

This equation may be understood as follows. Looking at expression (30a) we see 
that RCG.~) is the alternating sum of all processes which connect the states a and p, the 
intermediate states being all different from each other and from the projected states 
1, 2, . . . , n. This sum may be decomposed into the sum of all processes connecting a 
and p as before but excluding those which pass through the state n + 1 plus the sum of all 
processes which do pass through the state n + 1. These are just the first and second 
terms of equation (35) respectively. Operator equations analogous to equation (35) 
were used with a hierarchy of level shift operators by Mower (1980) to generate 
operator continued fraction expressions. 

5. The eigenvalue problem 

Let us now indicate some physical situations to which our formalism may be applied. 
First we consider the eigenvalue problem where we wish to determine the perturbed 
energy levels of some Hamiltonian operator H = H o  + V. Setting lb) 0 ,  A' = A - H o ,  
A' = - V, where A is one of the eigenvalues to be determined, equation (1) becomes 

( A  -Ha - V ) ~ X )  = 0. (36) 

If the states li) are chosen to be eigenvectors of H o  

H O J i )  = @ti), i = 1,2,. . . (37) 

and we take P = 11)(11, then equation (13) gives 

A -E:+R, , (A)= o (38) 
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(assuming x 1  # 0) .  Using the power series expansion (18) for R, we obtain 

1 
A =E:+ vI1+ E vlj A - E P - v , ,  VI 1 

j #  1 

which is usually solved iteratively for A, thereby giving the eigenvalue of H which 
reduces to E: when V tends to zero. 

In the continued fraction approach we take n = 1, b, = 0 in equation (29) and replace 
all the diagonal elements a,; of the matrix A by A - E :  - Vi; and the diagonal elements 
aij by - Vij. Then we obtain 

where we have written out explicitly the first few terms of the 9 functions using 
equation (24b). The power series expansion of expression (40) agrees with equation 
(29). For a finite number of levels, N, equation (40) is a finite series and it gives the exact 
Nth-order polynomial for the eigenvalues. In practice it is again usually solved 
iteratively for the particular eigenvalue which reduces to E: as V tends to zero. 

When the levels are degenerate this approach needs to be modified. For example, if 
the states (1) and 12) are degenerate, E? = E:, terms such as E: - E! - V2,  appear in the 
denominators of equation (39) in the course of the iterative solution. If Vjj = 0 (all j )  (as 
is usually the case) this gives rise to a singularity. In equation (39) it means that the 9 
functions become of order V (or of order V 2  if V ,  = 0) instead of order one as in the 
case of non-degeneracy, and the iteration scheme breaks down. 

To illustrate the procedure in the case of degeneracy we consider the case where we 
have two levels, (1) and (2) degenerate. We take b, = 0, and P = Icy)(a( in equation 
(13,  or equivalently n = 2 in equations (29) or (34). Using the fact that the determinant 
of the resulting set of equations must be zero for consistent solutions we obtain 

This equation treats the two states 11) and (2) on an equal footing and may be solved to 
lowest order as a quadratic equation in the A's. An iterative scheme may now be safely 
used to obtain the higher-order solutions, because the unperturbed energies E: and E ;  
no longer appear explicitly in the denominators of the Rip This may be seen from equation 
(30), where the sums over j and k on the right-hand side extend over 3 ,4 ,  . , . , or from 
equation (8) where the factors Q = 1 - 11)(11- (2)(21 prevent reference to the states 11) 
and 12). Equation (41) is equivalent to equation (23) of Swain (1977), or equation (86) 
of Mower (1980). The solution of this equation is discussed further in both papers, but 
we should point out that in the former there is a sign error in equation (28). (The 
right-hand sidc should be multiplied by minus one, which means that in equations (32), 
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A - E : + R , ,  R12 R13 
R21 A-E:+R,z  R23 
R 3 1  R32 A -E!+ R33 

(36) and (37) the factors E-Ea  and A‘”-E, in the denominators should also be 
multiplied by minus one.) 

Clearly if we had the three states Il), 12), 13) degenerate or nearly degenerate, we 
would take P =  E:=, Icr)(aI in equation (15), or n = 3 in equations (37), which lead to 

= O  

and so on for higher-order degeneracies. 

written in a more concise form here. 

written 

Again this is equivalent to equations (44) and (47) of Swain (1977) but the results are 

Let us now consider briefly the calculation of the eigenvectors. These may be 

For the non-degenerate case we may obtain the x i  by noting that a solution of the 
matrix equation Ax = 0 is 

X i  = C A k ’  (44) 

where c is a constant, and Ak’ is a cofactor of the matrix A ( k  indicates any row). 
Choosing c = l / A k k  we may write this solution (cf Swain 1976) in continued fraction 
form as 

P j = k  

Making use of equation (3 1 a )  this may be written simply as 

x .  I = s. I k .  (46) 

This gives us the eigenvector which reduces to xi = 8jk when the off-diagonal elements 
of the matrix are set to zero. Note that with this particular choice of the constant c in 
equation (44) the wavefunction is not normalised; if normalised wavefunctions are 
required we must use instead of (43) the expression 

. - 1  

In the case of n-fold degeneracy we solve equation (34) with the right-hand side set 
to zero for the n degenerate components x,. Again, these are only determined to within 
an arbitrary constant. When these are known, the remaining xl may be found by 
substituting the x, into equation (27) with all the b, set to zero. The diagonal elements 
aji are of course functions of the perturbed eigenvalue A and it is assumed that 
the appropriate value is used for this quantity. The wavefunction must again be 
normalised. 
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6. Transition probabilities 

The wavefunction of a system described by a time-independent Hamiltonian H is given 
at time t in terms of its value at time t = 0 by the relation 

where G ( z )  is the resolvent operator (Goldberger and Watson 1964, Messiah 1962) 
and the contour in equation (48) lies above the real axis and all the singularities of the 
integrand. Explicitly 

G ( z )  = ( Z  -H)- '  (49) 

and the resolvent satisfies the equation 

( z - H ) G ( z ) =  1. (50) 

Operating on equation (50) with l+(O)) we obtain 

( 2  -H){G(z)l+(O))I= I+(O)> (5 1) 

A E Z - H ,  I X )  = G(z)l$(O)), lb)= I*(O)). (52) 

which is of the same form as equation (1) with 

Thus, if one wants the probability amplitude for a particular state 11) say, this is found by 
inverting ( l ~ G ( z ) ~ + ( O ) ) = ( l / x ) = x ,  according to equation (48) and x 1  may be found 
from equation (13) under the replacements (52), or from equation (29) or (34) for n = 1 
under the replacements 

a,, = ( z  -E:)&, - V,, =A:aL, +A,:, b, =(1I$(O)). (53) 

Explicitly, 

which agrees with results obtained previously (Swain 1975). We have assumed of 
course that the Hamiltonian is decomposed as 

H = H ' + V  (56) 

and that the states li) are eigenvectors of H o  as in equation (37). 

transition probability is obtained by taking the modulus squared. 

on the same footing. With the replacements (53) equation (29) becomes 

The time-dependent probability amplitude is found from equation (48) and the 

In the case of n-fold degeneracy it is again necessary to treat the n degenerate states 
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Thus for the case where 11) and 12) are degenerate we obtain the equations 

= ( bZ-):;Y=l RZibj/9{”) ) ( 5 8 )  
b1 -2El  Rl jbj /9!12)  z -E: + R&) R 1 2 ( Z )  ( R21(z) z - E: + R22(2)  

which give the probability amplitudes for the two degenerate states. The amplitudes for 
the other states, xi ( i  f 1, 2), are found by substituting for x1 and x2 in equation (27). 

The extension to several degenerate states proceeds along exactly similar lines, 
Finally, we note that we may recover the standard treatment by regarding the 

operator equation (50) as being of the form (1) with the correspondences 

A’= 2 -H’, A’G-V, b)= G ( z ) ,  Ib)= 1=c li)(il (59) 
I 

where the states j i )  form a complete set. We now take Ix) and lb) as operators, not 
vectors, but this causes no change in the argument up to equation ( lo) ,  which in the 
present case becomes 

( Z  - H’+ R)PG = s 
where 

R = -PVP- P V ( z  - H a -  QV) - ’QVP 

S = P + P V ( Z - H ~ - Q V ) - ’ Q .  (62) 

These operators may be expanded in power series in V according to equations (18) and 
(19): 

R = - P  2 m ( V y )  Q k  V P  
k = O  2 - H  

m 

Equation (61) is just the negative of the usual definition of the level shift operator 
(e.g. Cohen-Tannoudji 1968) and the standard treatment may be developed as in that 
reference. 

Acknowledgment 

One of us (RIJ) thanks the Department of Education for Northern Ireland for financial 
support. 

References 

Cohen-Tannoudji C 1968 Cargise Lectures in Physics vol 2, ed M Levy 
Feenberg E 1948a Phys. Rev. 74 206-8 
~ 1948b Phys. Rev. 74 664-9 
Feshbach M 1948 Phys. Rev. 74 1548-9 
Goldberger M L and Watson K M 1964 Collision Theory (New York: Wiley) 
Lowdin P - 0  1962 J .  Math. Phys. 3 969-82 
Messiah A 1962 Quantum Mechanics (Amsterdam: North-Holland) 
Mower L 1980 Phys. Rev. A 22 882-97 
Richards P E 1948 Phys. Rev. 74 835-6 
Swain S 1975 J. Phys. A: Math. Gen. 8 1277-97 
- 1976 J. Phys. A:  Math. Gen. 9 1811-21 
- 1977 J .  Phys. A :  Math. Gen. 10 155-65 


